126 research outputs found

    A Search for Gamma-Ray Burst Optical Emission with the Automated Patrol Telescope

    Get PDF
    The Automated Patrol Telescope (APT) is a wide-field (5 X 5 deg.s), modified Schmidt capable of covering large gamma-ray burst (GRB) localization regions to produce a high rate of GRB optical emission measurements. Accounting for factors such as bad weather and incomplete overlap of our field and large GRB localization regions, we estimate our search will image the actual location of 20-41 BATSE GRB sources each year. Long exposures will be made for these images, repeated for several nights, to detect delayed optical transients (OTs) with light curves similar to those already discovered. The APT can also respond within about 20 sec. to GRB alerts from BATSE to search for prompt emission from GRBs. We expect to image more than 2.4 GRBs/yr. during gamma-ray emission. More than 5.1 will be imaged/yr. within about 20 sec. of emission. The APT's 50 cm aperture is much larger than other currently operating experiments used to search for prompt emission, and the APT is the only GRB dedicated telescope in the Southern Hemisphere. Given the current rate of about 25% OTs per X/gamma localization, we expect to produce a sample of about 10 OTs for detailed follow-up observations in 1-2 years of operation.Comment: 4 pages latex + 3 ps figures. Download a single tar file of ps at http://panisse.lbl.gov/public/bruce/optgrbsearch.tar.g

    First Weak-lensing Results from "See Change": Quantifying Dark Matter in the Two Z>1.5 High-redshift Galaxy Clusters SPT-CL J2040-4451 and IDCS J1426+3508

    Full text link
    We present a weak-lensing study of SPT-CLJ2040-4451 and IDCSJ1426+3508 at z=1.48 and 1.75, respectively. The two clusters were observed in our "See Change" program, a HST survey of 12 massive high-redshift clusters aimed at high-z supernova measurements and weak-lensing estimation of accurate cluster masses. We detect weak but significant galaxy shape distortions using IR images from the WFC3, which has not yet been used for weak-lensing studies. Both clusters appear to possess relaxed morphology in projected mass distribution, and their mass centroids agree nicely with those defined by both the galaxy luminosity and X-ray emission. Using an NFW profile, for which we assume that the mass is tightly correlated with the concentration parameter, we determine the masses of SPT-CL J2040-4451 and IDCS J1426+3508 to be M_{200}=8.6_{-1.4}^{+1.7}x10^14 M_sun and 2.2_{-0.7}^{+1.1}x10^14 M_sun, respectively. The weak-lensing mass of SPT-CLJ2040-4451 shows that the cluster is clearly a rare object. Adopting the central value, the expected abundance of such a massive cluster at z>1.48 is only ~0.07 in the parent 2500 sq. deg. survey. However, it is yet premature to claim that the presence of this cluster creates a serious tension with the current LCDM paradigm unless that tension will remain in future studies after marginalizing over many sources of uncertainties such as the accuracy of the mass function and the mass-concentration relation at the high mass end. The mass of IDCSJ1426+3508 is in excellent agreement with our previous ACS-based weak-lensing result while the much higher source density from our WFC3 imaging data makes the current statistical uncertainty ~40% smaller.Comment: Accepted to Ap

    Scientific Computing Meets Big Data Technology: An Astronomy Use Case

    Full text link
    Scientific analyses commonly compose multiple single-process programs into a dataflow. An end-to-end dataflow of single-process programs is known as a many-task application. Typically, tools from the HPC software stack are used to parallelize these analyses. In this work, we investigate an alternate approach that uses Apache Spark -- a modern big data platform -- to parallelize many-task applications. We present Kira, a flexible and distributed astronomy image processing toolkit using Apache Spark. We then use the Kira toolkit to implement a Source Extractor application for astronomy images, called Kira SE. With Kira SE as the use case, we study the programming flexibility, dataflow richness, scheduling capacity and performance of Apache Spark running on the EC2 cloud. By exploiting data locality, Kira SE achieves a 2.5x speedup over an equivalent C program when analyzing a 1TB dataset using 512 cores on the Amazon EC2 cloud. Furthermore, we show that by leveraging software originally designed for big data infrastructure, Kira SE achieves competitive performance to the C implementation running on the NERSC Edison supercomputer. Our experience with Kira indicates that emerging Big Data platforms such as Apache Spark are a performant alternative for many-task scientific applications

    Going Forward with the Nancy Grace Roman Space Telescope Transient Survey: Validation of Precision Forward-Modeling Photometry for Undersampled Imaging

    Full text link
    The Nancy Grace Roman Space Telescope (Roman) is an observatory for both wide-field observations and coronagraphy that is scheduled for launch in the mid 2020's. Part of the planned survey is a deep, cadenced field or fields that enable cosmological measurements with type Ia supernovae (SNe Ia). With a pixel scale of 0".11, the Wide Field Instrument will be undersampled, presenting a difficulty for precisely subtracting the galaxy light underneath the SNe. We use simulated data to validate the ability of a forward-model code (such codes are frequently also called "scene-modeling" codes) to perform precision supernova photometry for the Nancy Grace Roman Space Telescope SN survey. Our simulation includes over 760,000 image cutouts around SNe Ia or host galaxies (~ 10% of a full-scale survey). To have a realistic 2D distribution of underlying galaxy light, we use the VELA simulated high-resolution images of galaxies. We run each set of cutouts through our forward-modeling code which automatically measures time-dependent SN fluxes. Given our assumed inputs of a perfect model of the instrument PSFs and calibration, we find biases at the millimagnitude level from this method in four red filters (Y106, J129, H158, and F184), easily meeting the 0.5% Roman inter-filter calibration requirement for a cutting-edge measurement of cosmological parameters using SNe Ia. Simulated data in the bluer Z087 filter shows larger ~ 2--3 millimagnitude biases, also meeting this requirement, but with more room for improvement. Our forward-model code has been released on Zenodo.Comment: Accepted for Publication in PAS

    Multi-Color Light Curves of Type Ia Supernovae on the Color-Magnitude Diagram: a Novel Step Toward More Precise Distance and Extinction Estimates

    Get PDF
    We show empirically that fits to the color-magnitude relation of Type Ia supernovae after optical maximum can provide accurate relative extragalactic distances. We report the discovery of an empirical color relation for Type Ia light curves: During much of the first month past maximum, the magnitudes of Type Ia supernovae defined at a given value of color index have a very small magnitude dispersion; moreover, during this period the relation between BB magnitude and B−VB-V color (or B−RB-R or B−IB-I color) is strikingly linear, to the accuracy of existing well-measured data. These linear relations can provide robust distance estimates, in particular, by using the magnitudes when the supernova reaches a given color. After correction for light curve strech factor or decline rate, the dispersion of the magnitudes taken at the intercept of the linear color-magnitude relation are found to be around 0m^m.08 for the sub-sample of supernovae with \BVm ≤0m.05\le 0^m.05, and around 0m^m.11 for the sub-sample with \BVm ≤0m.2\le 0^m.2. This small dispersion is consistent with being mostly due to observational errors. The method presented here and the conventional light curve fitting methods can be combined to further improve statistical dispersions of distance estimates. It can be combined with the magnitude at maximum to deduce dust extinction. The slopes of the color-magnitude relation may also be used to identify intrinsically different SN Ia systems. The method provides a tool that is fundamental to using SN Ia to estimate cosmological parameters such as the Hubble constant and the mass and dark energy content of the universe.Comment: ApJ, in pres
    • …
    corecore